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1. Introduction

In the course of supernova remnant (SNR) evolution, there appear

to be four well-defined stages: the first -102 years of unimpeded

expansion of hot gas away from the collapsed central object; a period

-2XlO4 years during which this envelope sweeps up interstellar material,

slowing down somewhat as it does so; a period -5X105 years during

which line emission is the most effective cooling mechanism; and a

terminal stage in which the expanding material becomes indistinguishable

from the background gas.

During the second stage, a shock wave is launched which propagates

ahead of the expanding shell. In the present paper, we are concerned with

the hydrodynamic character of this shock wave. Other workers (see, for

example, Chevalier 1976) have carried out elaborate one-dimensional

calculations incorporating realistic transport, radiation and atomic

physics models. While these are indispensable for acquiring a complete

understanding of SNR behavior, idealized simple models are also very

useful. They afford accurate predictions over a restricted parameter

range and qualitative descriptions over a wider range.

Such a model has been derived by Sedov (1946; 1959) for a blast

wave expanding from a point source into a gas-filled surrounding region.

[An abbreviated description has been given by Landau and Lifshitz (1959);

see also Newman (1977). Taylor (1950)and Von Neumann (1947) independently

developed similar models in studies of atmospheric explosions.] The model

consists of a similarity solution of the ideal gas equations for a strong

shock (Mach number M -V/cs >> 1, where V is the shock speed and c

the velocity of sound in the undisturbed medium) produced by deposition of

Note: Manuscript submitted December 20, 1979.
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an explosion energy W at the origin in a medium of density P. This

model can be expected to be fairly accurate in the second stage of

SNR evolution, during which the shock is effectively strong and line

radiation processes negligible. Chevalier (1976) and others Jo in fact

utilize it in this way in studying the evolution of Type II supernovas.

A question which comes readily to mind is whether the Sedov

solutions are stable, particularly when p is allowed to vary with

position. In their general form the solutions are quite messy. The

fluid variables p, v and p are given implicitly as functions of r and t

through the similarity variable Wt2/p r (for uniform p). Hence

investigation of the linear stability of perturbations about these

solutions is likely to be impossible in the general case except through

numerical approximations.

It is not a trivial exercise to demonstrate stability even of plane

shocks, a problem which has been treated by D'yakov (1954) and Erpenbeck

(1962) in ideal gas-dynamic systems, and by Gardner and Kruskal(1964) for

MHD shocks. All of these calculations found that shock waves propagating

in a uniform medium are stable. The physical mechanism is easy to

describe. A small ripple in the shock front gives rise to divergence

(convergence) in the curved portion ahead (behind) the main front. These regions

become weaker (stronger) than the unperturbed shock, hencepropagate

slower (faster) than average, thus reducing the amplitude of the ripple.

Evidently the longer the perturbation wavelength, the weaker the stabilizing

effect of this mechanism.

When this reasoning is applied to spherical shock waves it becomes

obscure and must be regarded as no better than a plausibility argument. If
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the density p drops sufficiently rapidly with increasing radius, it

is possible that the ripples ahead of the shock run away, while those

behind fall farther behind, leading to instability. Lerche and Vasyliunas

(1976) and Isenberg (1977) have claimed that for at least some decreasing

power-law density distributions, Sedov shocks are unstable for any

value of the adiabatic index y. Their conclusions, obtained after very

elaborate analysis, were remarkable in predicting instability at short

wavelengths, contradicting the intuitive argument appropriate to the planar

case. Newman (1979) has disputed the results, on the ground that Lerche and

Vasyliunas (1976) and Isenberg (1977) improperly treated the boundary

condition at the shock front.

The present paper is addressed to the problem of determining the

stability of a restricted class of the Sedov solutions, those in which

the outward flow behind the shock in homologous. This type of solutio was

apparently first considered by Primakoff (see Courant and Friedrichs 1948),

who was studying underwater explosions. He found that for p = const, the

ideal fluid equations have an explicit similarity solution when y = 7,

the approximate value of the effective adiabatic index of water at high

pressure. Keller (1956) generalized the results to arbitrary power-law

undisturbed density profiles and determined the value of the density exponent

q corresponding to each choice of y > 1.

Using a formalism originally developed by Bernstein and Book (1978) and

Book and Bernstein (1979) to study the Rayleigh-Taylor instability of

homologous expansions and contractions, we solve the linearized equations

of motion exactly. Our criterion of stability is that the amplitude of

the shock front perturbations divided by the shock radius vanish as t - =.
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We are able to show that the Primakoff blast wave and its three-dimensional

generalizations are stable against all modes, while the corresponding

two-dimensional line blast wave solutions are stable against all flute-

like (independent of z) perturbations (the case k # 0 is not amenable to

treatment).

The plan of the paper is as follows. In Section 2 we review the derivation

of the generalized Primakoff model, using an approach similar to that of

Keller (1956). In Section 3 we derive the linearized equations describing

the evolution of a small perturbation about the basic state. Invoking the

boundary conditions obtained from the Rankine-Hugoniot relations across the

shock reduces the calculations to solution of an eigenvalue problem. The

results are presented in Section 4 for cylindrical and spherical blast waves.

In Section 5 we discuss briefly the implications of our results.



2. Generalized Primakoff blast wave model

The density p, velocity , and pressure p for an ideal polytrope

with adiabatic index y satisfy the equations

+ P V . ,.= 0; (2.1)

p .+ Vp = 0; (2.2)

+ yp V • v = 0, (2.3)

where a dot denotes the material derivative 2 + v • V. On a surfaceat
Awith normal n, moving with velocity Y (where both n andjL can

depend on position), the fluid variables can change discontinuously

according to the Rankine-Hugoniot ("jump") conditions

\p0n • -' 0; (2.4)

/n (Y V - . + n =0; (2.5)

[p (V - v)2 + n • - )> = 0, (2.6)

where < > denotes the jump in the quantity enclosed. By dotting and

crossing (2.5) with we find the projections

- 32
PL." (-n - ) + = 0 (2.7)

//and

\p • (y -) lax ,-) =0 . (2.8)

The latter, by virtue of (2.4), reduces to

(n x -V -0. (2.9)

We will use bars to distinguish quantities ahead of .A from

those behind. Let us assume that. = 0, i.e., the fluid in front

of3S is stationary. It follows that n x v = 0, so the velocity

behind A lies in the direction of a. Hence only the magnitudes

5



v = * .. and V = n • enter into the jump conditions, and we

can rewrite (2.4) - (2.6) as

p(V - v) = p V; (2.10)

2 - 2 -

p (V- v) +p =p V +p ; (2.11)

p (V - v)3 + 2 (V - v) = P V3 + V. (2.12)
Y-l Y-l

In the limit of very strong shocks, effectively p - 0 and the solutions

of (2.10) - (2.12) simplify to

=y+I. (2.13)p y-l'

v 2S+ (2.14)

2 V2 v. (2.15)

Behind the shock front.4we seek solutions of (2.1) - (2.3) consistent

with homologous (uniform) expansion,

R = r f(t). (2.16)

Here R is the position of a particular element of fluid at t, and r is

the position that element would occupy at some time t0 (when f = 1);

by assumption the function f is the same for all fluid elements. There

is no special physical significance to the choice of the Lagrangian

variable r. We could, for example, label each element instead by the

position it occupied prior to being overtaken b, the shock, but use of

r simplifies the analysis.

For symmetric one-dimensional motion, Eqs. (2.1) - (2.3) become

+ pR1- 1 (2.17)
+-T(R v)= 0;
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p4+ = O (2.18)

-+ R a (R V - I v) = 0, (2.19)S+YTR

where v= 1, 2, 3 for planar, cylindrical and spherical geometry,

respectively. Using the Lagrangian description in terms of r and t,

we find from (2.17)

p(r,t) = p0 (r)f- , (2.20)

while from (2.19),

p(r,t) - p0 (r) f-v
Y .  (2.21)

Substitution into (2.18) now yields an equation which separates into

a spatial and a temporal o.d.e., viz.,

dp0  2
- = rp0  (2.22)

and

V (Y-1)+l 2 - 2 (2.23)

Equation (2.23) can be integrated twice, yielding

• 2 2w2  V (1-)
f = V (Y-l)f (2.24)

and

+[Vj(Y- - 2 2
f ={ + 2  + 1 1 (Y-1) W(t-t) v(y-l)+2 . (2.25)

From (2.16) the velocity satisfies

v = R = rf = Rf/f. (2.26)

We denote the radius of the shock at time t by S(t). When the

jump condition (2.14) is applied at R = S, we obtain

Sf _ 2S (2.27)
f y+-
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which integrates to

S s f 2,(2.28)

where s is the shock position at t t t0 ' Hence from (2.13),

_ Y+ 1

P(S't) = %O(S/f)f Y- (2.29)

Suppose P has a pwer-law dependence on R. In that case we can write

p =p 0(R/s )q Qq,(2.30)

Po, Q and q constant. From (2.28) - (2.30),

S Y+ - v S qy +lf-v+q (S q
P TOf 1 =* 0~ f s Ty-i PO f

_Y+
1  2( y-l~) (2.31)

7- P0 s f' Y-

whence for arbitrary r

P 0(r) y po - r y-1~q (2.32)

Similarly, from (2.15),

p(S't) =P 0 (s/f)f VY+ S~

2% sO q s2 fy-l * y12

y+l s f ( ~ 2 (2.33)

8



So

S 2p 0 2  y+l 2  2 S q y-l+ VY+ V (l-y)
P 0 v(y-l) - s -

- 22
(Y+l) P0 s v - q y+ v- l+q

(y~l) - ) 22)

(y+l) P0 s 2W2 q+ 2(y+vl+q)
)s fiY- (2-34)V (Y-1) s- f)

whence
- 2 2 ( 2(y+ v-l+q) (.5

p( (y+l) P0 s r )q + Y-l (2.35)0., (y-l) s

Substitution of (2.32) and (2.35) in (2.22) results in the requirement

that

q = y( v-2) - 3 +2 (2.36)
y+l

It turns out to be convenient to w.ite all equations in terms of

y, using (2.36) to eliminate q. Thus (2.32) and (2.35) reduce to

P0(r) r y- --) v-2 (2.37)

and
P _(r) y+l - 2 2 r(238)
0 (r = V(*-) P0  s (2.)38

respectively. Table 1 lists the values of q for two- and three-

dimensional flows corresponding to some typical choices of y. Note

that for v=3 the medium ahead of the shock is uniform (q=0) when

y=7, the original Primakoff solution. For v=2, however, the

undisturbed medium is always nonuniform except in the incompressible

limit y .

9



Table 1

q
y

v= 2  v 3

1-2 -3

5/3 -3/2 -2

3 -1 -1

7 -1/2 0

0 10
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The derivation of the equations describing a self-similar blast

wave was first carried out in terms of Lagrangian variables by Keller

(1956), who obtained a slightly more general result. The present approach

has the virtue of yielding an explicit solution for the fluid variables as

functions of r and t, amounting to a special case of the better known

Sedov (1946) solution, which is cast in Eulerian variables and is in general

implicit. We can recover the Eulerian form of the present results as

follows. If we choose t0 so that the zero of time coincides with the

instant of explosion, (2.25) becomes

2

____ ~+ 1 wt) v(y-l)+2

2
j (y -1)+2

C (Wt) " (2.39)

where

C v (y -1)+2 L y-li)+2 2  (2.40)

=-2 V(Y -1) "(.0

Then from (2.20) and (2.37), the Eulerian form of p is

4(1-v)

y(l)2-2v R v-2 )( "y-l)+2 (2.41)1)(R t) l OC(t

From (2.26),

v(R,t) = (l)+2 R (2.42)

From (2.21) and (2.38),

- 2v (y+l)

p-(R t) = - 2 2 R 2 Cv(Y- )+2V (Y-1 P s



=2(y-l)P R2(.3

[v(y-l)+2 ] 2 t2

by (2.40) and (2.41).

Equations (2.41) - (2.43) constitute an Eulerian description

of the flow behind the shock. Note that s and w occur only in the

4 (1-v)

expression s vW -)--

it is useful to rewrite (2.41) - (2.43) in terms of Q and the

total energy W,
S

W=T2v-1 f v-1 (1 PV2 + (2.44)

instead of the less easily interpreted s and w. For this purpose we

evaluate (2.44) [note that, by (2.43), the two terms in the integrand

are equal], with the result

V-1 2___________

W=2 2 Tr y+l 2 2[v y-l)2 (2.45)

Then we can rewrite (2.41) as 2(1-v)

p(R, t) yl{v(Y-l) L V(y-l)+2 ]2 }v(y-l)+2

v(y+l) 2(1-v)4(-v

v(y-l)+2 wv(y-l)+ 2  Rv-2 v(y.-l)I2 ,(2.46)

with a similar expression for p by way of (2.43). This form of the

solution is identical with that given by Sedov (1946; 1959).

12
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3. Linearized equations of motion

We follow Bernstein and Book (1978) in obtaining linearized

equations for the development of a small perturbation about the

solutions of Section 2. The element of fluid whose trajectory

is given by 4(r,t) is assumed to undergo a displacement to

R(r,tj + (r,t). The perturbation . satisfies the linearized

form of (2.2),

p-+ R P - (V ) V p = 0, (3.1)

where first-order quantities are distinguished by the subscript 1.

Substituting the perturbed velocity, density and pressure from

v = i ,(3.2)

P - PV " (3.3)

and

(3.4)

and making use of the relation (2.16), we obtain

W-2 v(y-l) +2 + rV- - 2-'V (3.5)

-2f -rV'- r V(r-.) - (VE).r = 0, (3.5)

where V denotes the gradient with respect to r.

We seek solutions of (3.5) by the method of separation of

variables. Substituting

.(,t) =X(r)T(t), (3.6)

13



we find

f(y-l)+2 = _ 2T (3.7)

and

, --ro + YLV(r 20) + (v-2)ruJ + V(r.X) -X 0, (3.8)

where p is a separation constant and 0 = VX. Substituting for

f from (2.25) converts (3.7) into

2vyl + 2 )]) 2  t 2~ T PT (3 9)

which is homogeneous in t. Equation (3.8) is likewise homogeneous

in r for v = 3, and also for v = 2 if X is independent of z, the

coordinate in the direction of the axis of symmetry. It follows

that r and t both enter into with power-law dependences, viz.,

X ra (3.10)

T t . (3.11)

By (2.16), the solutions expressed in terms of the Eulerian variables

R,t have the same property (with different coefficients a', a').

Writing

X = arU, (3.12)r

ra = bra, (3.13)

where X is the radial component of X, we see that (3.8) yieldsr

(p+c) a + LY-(a+ v-1)-lJ b 0 0. (3.14)

A second equation connecting a and b results when we take the

14



divergence of (3.8):

L(a+l)(c(+2) - AJla+ P-i + [ -- lJ (v+-c-l)

+ I L(a+l)(a+2) - A]} b = 0. (3.15)
VJ

Here A is the coefficient of the terms in the Laplacian resulting from

the angular dependence of For v = 3, A = (£+l), while

for v = 2, A = m, where k and m have their usual meanings.

From (3.9) and (3.11) we get a relation between w and 6,

Lv(y-l)+2 j2 a(-l)
2v(y-l) (3.16)

In order to proceed further, we need to apply appropriate boundary

conditions to the solution.

As a result of the perturbation, the shock front38 undergoes

a small displacement into .'. We can describe this by saying that

at time t a point on'ata(t) is shifted to

S'(t) = S + C(St). (3.17)
VPf. i0. so

There is an arbitrariness in the definition of ,, only the normal

component of which is significant. We thus free to define C in theNo

most convenient manner, as a mapping along the unperturbed normal n:

C(St) = n (S,t) C(St) (3.18)

We introduce and V1. the first order corrections to n andV

respectively, and label the perturbed fluid variables with primes

to indicate that they are evaluated on X instead of J. In first order,

the jump conditions (2.13) - (2.15) yield

15



P' 0 0, (3.19)

v + i 2 =  'V, + n V); (3.20)

P 4p (n :)(n V, + n, V). (3.21)
1 y+l - - 01~

From kinematic arguments, n is readily shown to have the form

n x n • (VO )- n -(VC). n, (3.22)

from which it follows that n - = 0. Thus pl is orthogonal to n,

and therefore to and V. Equations (3.20) and (3.21) simplify to

n v = 2 n V (3.23),Y+l 401

and
4p(n . n - V

P*) = -+ = 2p (n • V)P 0VI). (3.24)

Y+l 1% 8% -

The expressions (3.2) - (3.4) for the perturbed fluid variables

must now be replaced by their Eulerian counterparts,

PI = PVR - •VR; (3.25)

v l = . ; (3.26)

Plr= - YPVR " - " VRP" (3.27)

Here ( = R (,t) is the displacement in position experienced by a

fluid element whose unperturbed position at time t was R. To

evaluate the perturbed quantities at S', we expand in Taylor series to

obtain

16



p'1 (Qt) = P1(It) + C.V P(1,)0 (3.28)

Y. (a,t0 = ,S, t) + I-VR'V; (3.29)

p l ')=p 1 (-,t) + *Vp. (3.30)

Combining (3.25) -(3.30) and substituting in (3.19) and (3.23)-

(3.24), we find three equations containing ,V 1 and g* For a spherical

unperturbed shock front J these take the form

C ~ ~ Z (3.31)

r r yA 1 ~z

ap 4 V~r 2V 2 9
r ar Y+ y+l W 3.2

all evaluated at R =S. Here C and V lrare the radial components of

Sand 1l, and E = V -L. Instead of solving for I in general, we use (2.26),

(2.37) and (2.38) to rewrite (3.31) - (3.33) for the case of the Primakoff

solution:

(v-2) ( -E) - S = q c P qC= (3.34)
y-1. P

+ 2/t 2V r(.5
r v(y-l)+2 r = .(335

17



4 SVV1 r

_ ypSE + )p ( -r 4 7+1  + qpc. (3.36)

By eliminating Vlr from (3.34) - (3.36) we can express C in erms of E,

y l(- S E , (3 .3 7 )

and then substitute for C to obtain the desired boundary condition

at R = S, expressed in terms of . alone:

(y-1) SE + Lv(y-l) + 2]tc = 0. (3.38)

Since by (2.16) RE = ro,we can use (3.11) - (3.13) to write

(3.38) in the form

(y-l)b + [4y-l) + 2 ]a = 0 . (3.39)

Solving (3.14), (3.15) and (3.39) for a/b yields

X ( +\x_ i) -1i[

a , v 1
b P+OL

li-l + L (v- 2)y 1] (-v+o±-l) + (ac+l)(a+2)-AJ

(o+l) (oL+2) - A

y-1

SF(y-1)+2 ]8 (3.40)

Equations (3.40), together with (3.16), constitute a set of three

algebraic relations in u, B and p. The solutions are subject to an

additional condition, namely that of "regularity" at the origin. This

is the requirement that the second-order contribution to the total energy,
18hLi



s

w2 = v2-2fdRRV-l{DZ2 + p[(y-l)(VR 2

0

+ VR : VRJ 1 (3.41)

not diverge at R = 0. Using (2.16) to rewrite the integral in terms

of r, we see that it is convergent provided

Re a> 1 - v, (3.42)

which is also the condition that p1 be finite at r = 0. Thus only modes

satisfying (3.42) are physically realizable.

19



4. Solution of the eigenvalue problem

Equations (3.16) and (3.40) were solved for both v 2 and v = 3. The

degree of this system i; not easy to determine by inspection, and initially

solutions were obtained numerically for various choices of A. When

it became apparent that there are only four solutions, the equations were

manipulated to reduce them to a quartic in a, B or p (these forms and

their solutions were obtained largely by use of the interactive computerized

symbolic manipulation system MACSYMA).

As our criterion of stability, we evaluated the time dependence of

C/S. If C/S increases with time, the basic state is unstable; otherwise

it is stable. From (2.28) and (3.11) we see that this ratio is

proportional to

(s/f)o, t
(y+l)/2 f (y-I-y-t] (4.1)

f

Hence the condition for stability is

Ref : 0, (4.2)

where

~(y-l) +--i 2 (4.3)v (y-1.) + 2

Accordingly we list below the values of i corresponding to those

found for ai and .

(a) v 2

The four roots of the a equation can be expressed in the form

(2 _l)a = 1 ±D DE (4.4)

20



where

D = [y - (y 2 -1)A]i (4.5)

and

E = 2 ( 2 _1)(1-A) + 2(2-y 2) D. (4.6)

Here the circled sign in (4.4) varies independently of the uncircled

ones in (4.4) and (4.6), which are either both (+) or both (-). The

corresponding values of are given by

2y(y+l) = y(l ± D))E2, (4.7)

while from (4.3) those of I are

1 D
2 2y (4.8)

The associated values of V, which we omit, can also be obtained as solutions

of a quartic or by substitution in (3.16).

When y - 1 or when A = 0 or A = 1, D is real. The latter cases

correspond to m = 0 and m = 1, the two flutelike modes with the

longest wavelengths allowed in cylindrical geometry, and are therefore

the ones expected (according to the simple picture discussed in Section 1)

to be most unstable.
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Table 2

Root (Y-1)a 8 r

;+2 0 0

0 0 -

0 10

0 0 -

tn= 0

Roor a 8r

11-

1- -0

Y-1-1
3+y- Y-

Root r

S2 _ y (y+l) 2y

0 0 l

ci 2_ 1 j~ 2

0-0 0 1-
2y
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Table 2 lists the associated values of a, and 1 for each of the four

roots, labeled by the circled and uncircled signs. We note that (3.42)

is satisfied for all solutions found in these limits except the G -)

root when m = 0. Furthermore, £ 0 for all cases shown in the Table.

For sufficiently large values of y and A, D becomes imaginary and

the real part of F always equals -1/2. Thus we have as a general conclusion

F 0, so that when v = 2 the blast waves solution under consideration

are stable against perturbations with any value of m.

(b) v= 3

The analysis of the spherical case exactly parallels that carried

out for v = 2. The four a roots are given by

2(y2_1 = 4-y-y 2  D(CE! (4.9)

where now

D = [(3y-l) 2  4(y 2-)A] (4.10)

and

2
E y4 (9-4A) + 6y 3 - y 2(26-4A) - 18y + 37

2(6-y-3y 2)D, (4.11)

while the corresponding a roots are given by

2(y+l)( 3y-1)6 = 3y-l ± yD( , (4.12)

where the same conventions as before are employed with regard to circled
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and uncircled signs. Substitution of (4.9) and (4.12) in (4.3) yields

1 D

2 2(3y-l) (4.13)

When y 1 1, D - 2. For k = A = 0, D = 3y - 1, while for k = 1,

A = 2 and D = 3 - y. Table 3 shown the values of a, and F in these

limiting cases, where for conciseness we have written

F = y4 + 12y 3 - 34y 2 
- 36y + 73. (4.14)

As before, (3.42) holds in all these cases except the (QC-) mode for

k = 0, and F < 0 for all cases shown in the Table. From (4.13), it is

clear that the latter conclusion holds in the general case as well,

although (3.42) is usually satisfied only for one pair of roots.
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Table 3

Root (y-r)a B r

+ 20 0

(2:- 0 0 -I

r + 0 10

(.9.)- 0 0 -1

0.=

Root a o 1
0++ 1 2 0

3Y-1

3y-1

+2Q-2) 3(Y-1) 0
Y- 1  3y-I

-2 3 4(y-1) -1
y+l (y+l) (37-1)

Root a BT

S+ 7-2-Y+F -+6-y2-F 2 (y-1)
2 (y2_) 2 (y+l) (3 y-) 3y-1

Co 0 --IA
3y-I

+ 7-2y-y
2 F -1+6y-y2 +F" - 1)

2 -1) 2(y-l) (3y-l) 3y-1

0)- -1 y- _y~
3
y-i 

3
y-

1
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5. Conclusion

The results presented in this paper establish rigorously

the stability of a restricted class of the general Sedov solutions,

This class(the Primakoff blast wave and its analogs) has been shown

by Sedov (1959) to be degenerate. That is, the solution collapses to

a single point in the phase plane defined by the reduced flow and sound

speeds, as a consequence of the boundary condition being applied at a

singularity(in this case, the origin). Oppenheim et al. (1972) make

clear the relationship of such degenerate solutions to the general case.

The simplifying assumption responsible for the tractability of the

problem we have solved is the requirement (2.36) that the unshocked medium

have, for any given value of y, a particular power-law density profile.

As far as we know, there are no observations of supernovas for which

the envelope gas density profiles are sufficiently accurately known to say

whether they are close to those of the present model. It would be

surprising if anything so simple actually occurred.

The results presented here provide no basis for any conclusions

regarding the stability of the class of Sedov solutions as a whole. Never-

theless, it is probable that other profiles which are qualitatively

similar, i.e., decreasing as some other power of the radius or perhaps

logarithmically, are likewise stable. The reason for saying this is

that (4.13) predicts positive(better than marginal) stability for almost

all modes. Even a hypothetical shift in the direction of instability could

well leave Rer < 0 for all modes, or all except X = 0.

We note that the analysis of the cylindrical problem is similarly

incomplete. It is incomplete in another way because of the omission of

modes with k 0O. Although there are few astrophysical examples ofz

cylindrical explosions, they do arise in laboratory experiments, such as
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those relating to the propagation of intense pulsed charged-particle

beams through gas-filled chambers. There, too, the question of the

stability of the resulting shock waves propagating into the surrounding

medium has been widely discussed. In such experiments, however, the

usual case of interest is that of radially increasing density profiles

created as a result of channeling or hole-boring by previous pulses.

Note that our analysis applies, mutatis mutandis, to imploding

shocks for which the flow behind (i.e., outside) the front is homologous.

This is a restricted case of the general solution found by Guderley

(1942). If we replace t by -t, all equations remain correct except

those defining the energy, where the integrals must now be carried out

from S to -. Instead of (2.44) we find a divergent expression for W.

Equation (3.41) for W2 can also diverge but must do so less rapidly.

The condition for this, which is also the condition '-hat first-order

quantities be small compared with their unperturbed counterparts, is

readily seen to be a 1, replacing (3.42). This means that a different

subset of the solutions found in Section 4 corresponds to physically

realizable modes. The general conclusion ReF L 0 implies instability, since

c/S diverges as -t -> 0. From Table 3 we see that the fastest growth (r = -1)

is found as y 1 1 or when k = 0, but we conclude from (4.13) that insta-

bility persists even when Z.

Considerably more work can probably be done along the lines of

that presented here. While an analysis in closed form of the stability

of the general Sedov solutions is unlikely, it would be surprising if

the use of more powerful mathematical techniques than those employed

here could not widen the range of accessible cases.
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